Molecular Landscape of Glioblastoma – Recent Advances in Genetic Alterations and Clinical Implications

Publication Date : 02/06/2023


Author(s) :

Alexandra, Gentiana Ioana, Marianne Elena, Andrei, Georgiana, Alexandra.


Volume/Issue :
Volume 3
,
Issue 2
(06 - 2023)



Abstract :

Glioblastoma (GBM) is the most aggressive primary brain tumor with limited treatment options and poor prognosis. In recent years, molecular research has provided valuable insights into the underlying mechanisms of GBM, uncovering key molecular alterations and signaling pathways that drive tumor development and progression. Driver mutations play a critical role in the pathogenesis of glioblastoma (GBM), influencing tumor initiation, growth, and therapeutic response. Among the key driver mutations identified in GBM, two prominent examples are mutations in the isocitrate dehydrogenase (IDH) gene and the epidermal growth factor receptor (EGFR) gene. Dysregulated signaling pathways, including the PI3K/Akt/mTOR, the Ras/Raf/MEK/ERK, and the NOTCH pathway play a critical role in cell proliferation, survival, and invasion in GBM. Epigenetic modifications contribute to tumor initiation, repression of the tumor suppressor genes, and therapy resistance. Global DNA hypomethylation, site-specific hypermethylation, histone deacetylase, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) are the most common epigenetic modifications. Immune checkpoints, such as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are upregulated, leading to T-cell exhaustion and impaired antitumor immune responses. The molecular classification systems have provided a more refined understanding of GBM biology, have important implications for personalized treatment strategies, play a role in guiding clinical trials designed to specifically target and evaluate novel therapies in patients with specific molecular subtypes, and hold promise for prognostication and predicting treatment response. The identification of molecular subtypes associated with distinct clinical outcomes can aid in patient risk stratification and inform treatment decisions.


No. of Downloads :

0


Copyright © Journal of Medical & Radiation Oncology 2024.

Power by Uny Agency